Skip to contents

Incidence, Growth Rate and Reproduction Number estimators

doubling_time()
Doubling time from growth rate
infer_population()
Infers a daily baseline population for a timeseries
infer_prevalence()
Infer the prevalence of disease from incidence estimates and population size.
infer_rate_ratio()
Calculate a risk ratio from incidence (experimental)
infer_risk_ratio()
Calculate a normalised risk ratio from proportions
inv_wallinga_lipsitch()
Calculate a growth rate from a reproduction number and an infectivity profile
multinomial_nnet_model()
Multinomial time-series model.
normalise_count()
Calculate a normalised count per capita
normalise_incidence()
Calculate a normalised incidence rate per capita
poisson_glm_model()
Poisson time-series model.
poisson_locfit_model()
Poisson time-series model.
proportion_glm_model()
Binomial time-series model.
proportion_locfit_model()
A binomial proportion estimate and associated exponential growth rate
rescale_model()
Rescale a timeseries in the temporal dimension
rt_cori()
Reproduction number estimate using the Cori method
rt_epiestim()
EpiEstim reproduction number
rt_from_growth_rate()
Wallinga-Lipsitch reproduction number from growth rates
rt_from_incidence()
Reproduction number from modelled incidence
rt_from_renewal()
Reproduction number from renewal equation applied to modelled incidence using statistical re-sampling
wallinga_lipsitch()
Calculate the reproduction number from a growth rate estimate and an infectivity profile

Delay distributions and Infectivity profiles

format_ip()
Print a summary of an infectivity profile
make_empirical_ip()
Recover a long format infectivity profile from an EpiEstim style matrix
make_gamma_ip()
Make an infectivity profile from published data
make_posterior_ip()
Make an infectivity profile from posterior samples
make_resampled_ip()
Re-sample an empirical IP distribution direct from data
summarise_ip()
Generate a single infectivity profile from multiple bootstraps

Visualisations

breaks_log1p()
A scales breaks generator for log1p scales
geom_events()
Add time series event markers to a time series plot.
`%above%`
Insert a layer at the bottom of a ggplot
integer_breaks()
Strictly integer breaks for continuous scale
logit_trans()
logit scale
plot_cases()
Plot a raw case counts as a histogram
plot_counts()
Plot a raw case count timeseries
plot_growth_phase()
Plot an incidence or proportion versus growth phase diagram
plot_growth_rate()
Growth rate timeseries diagram
plot_incidence()
Plot an incidence timeseries
plot_ip()
Plot an infectivity profile
plot_multinomial()
Plot a multinomial proportions mode
plot_prevalence()
Plot a proportions timeseries
plot_proportion()
Plot a proportions timeseries
plot_proportions()
Plot a raw case count proportion timeseries
plot_rt()
Reproduction number timeseries diagram
scale_y_log1p()
A log1p y scale
scale_y_logit()
A logit y scale

Time series functions

as.Date(<time_period>) as.POSIXct(<time_period>)
Convert time period to dates
as.time_period() c(<time_period>) `[`(<time_period>) `[<-`(<time_period>) `[[`(<time_period>) `[[<-`(<time_period>) seq(<time_period>) is.time_period() print(<time_period>)
Convert to a time period class
cut_date()
Places a set of dates within a regular time series
date_seq(<Date>)
Expand a date vector to the full range of possible dates
date_seq()
Create the full sequence of values in a vector
date_seq(<numeric>)
Create the full sequence of values in a vector
date_seq(<time_period>)
Expand a time_period vector to the full range of possible times
date_to_time()
Convert a set of dates to numeric timepoints
fdmy()
Format date as dmy
is.Date()
Check whether vector is a date
julian(<time_period>)
Extract Parts of a POSIXt or Date Object
labels(<time_period>)
Label a time period
max_date()
The maximum of a set of dates
min_date()
The minimum of a set of dates
months(<time_period>)
Extract Parts of a POSIXt or Date Object
quarters(<time_period>)
Extract Parts of a POSIXt or Date Object
time_aggregate()
Aggregate time series data preserving the time series
time_summarise()
Summarise data from a line list to a time-series of counts.
time_to_date()
Convert a set of time points to dates
weekdays(<time_period>)
Extract Parts of a POSIXt or Date Object

Simulation and testing functions

cfg_beta_prob_rng()
Generate a random probability based on features of the simulation
cfg_gamma_ip_fn()
Get a IP generating function from time varying mean and SD of a gamma function
cfg_ip_sampler_rng()
Randomly sample from an empirical distribution
cfg_linear_fn()
Linear function from dataframe
cfg_step_fn()
Step function from dataframe
cfg_transition_fn()
Sample from a multinomial transition matrix
cfg_weekly_gamma_rng()
Weekly delay function with day of week effect
cfg_weekly_ip_fn()
Weekly convolution distribution function
cfg_weekly_proportion_rng()
Random probability function with day of week effect
quantify_lag()
Identify estimate lags in a model
score_estimate()
Calculate scoring statistics from predictions using scoringutils.
sim_apply_ascertainment()
Apply a ascertainment bias to the observed case counts.
sim_apply_delay()
Apply delay distribution to count or linelist data
sim_branching_process()
Generate a line list from a branching process model parametrised by reproduction number
sim_convolution()
Apply a time varying probability and convolution to count data
sim_delay()
Apply a time-varying probability and delay function to linelist data
sim_delayed_observation()
Apply a right censoring to count data.
sim_multinomial()
Generate a multinomial outbreak defined by per class growth rates and a poisson model
sim_poisson_Rt_model()
Generate an outbreak case count series defined by Reproduction number using a poisson model.
sim_poisson_model()
Generate an outbreak case count series defined by growth rates using a poisson model.
sim_summarise_linelist()
Summarise a line list
sim_test_data()
Generate a simple time-series of cases based on a growth rate step function

Reparameterised statistical distributions

dbeta2()
The Beta Distribution
dgamma2()
The Gamma Distribution
dlnorm2()
The Log Normal Distribution
dnbinom2()
The Negative Binomial Distribution
pbeta2()
The Beta Distribution
pgamma2()
The Gamma Distribution
plnorm2()
The Log Normal Distribution
pnbinom2()
The Negative Binomial Distribution
qbeta2()
The Beta Distribution
qgamma2()
The Gamma Distribution
qlnorm2()
The Log Normal Distribution
qnbinom2()
The Negative Binomial Distribution
rbern()
A random Bernoulli sample as a logical value
rbeta2()
The Beta Distribution
rcategorical()
Sampling from the multinomial equivalent of the Bernoulli distribution
rdiscgamma()
Random count data from a discrete gamma distribution
reparam-dist
Re-parametrised distributions
rgamma2()
The Gamma Distribution
rlnorm2()
The Log Normal Distribution
rnbinom2()
The Negative Binomial Distribution
wedge
Wedge distribution

Data Documentation

covid_ip
A COVID-19 infectivity profile based on an empirical resampling approach
covid_test_sensitivity
Test sensitivity of PCR tests
covid_viral_shedding
The COVID-19 viral shedding duration
du_serial_interval_ip
The Du empirical serial interval dataset
england_consensus_growth_rate
The SPI-M-O England consensus growth rate
england_consensus_rt
The SPI-M-O England consensus reproduction number
england_covid
Daily COVID-19 case counts by age group in England
england_covid_pcr_positivity
England COVID-19 PCR test positivity
england_covid_proportion
England COVID by age group for ascertainment
england_demographics
England demographics
england_events
Key dated in the COVID-19 response in England
england_nhs_app
NHS COVID-19 app data
england_ons_infection_survey
The england_ons_infection_survey dataset
england_variants
Counts of COVID-19 variants
ganyani_ip
A COVID-19 infectivity profile based on an Ganyani et al 2020
ganyani_ip_2
A COVID-19 infectivity profile based on an Ganyani et al 2020
germany_covid
Weekly COVID-19 case counts by age group in Germany
germany_demographics
Germany demographics
test_ip
A test infectivity profile generated from a set of discretised gamma distributions with parameters mean 5 (95% CI 4-6) and sd 2 (95% CI 1.5-2.5).
test_poisson_rt
An example of the linelist output of the poisson model simulation with defined $R_t$
test_serial
A serial interval estimated from simulated data
test_ts
A test time series dataset

Others

dwedge()
Wedge distribution
pwedge()
Wedge distribution
qwedge()
Wedge distribution
reband_discrete()
Reband any discrete distribution
rwedge()
Wedge distribution
test_bpm
An example of the linelist output of the branching process model simulation