
Package index
-
doubling_time() - Doubling time from growth rate
-
gam_delayed_reporting() - Delayed GAM reporting model function generator
-
gam_knots() - Derive a set of knot points for a GAM from data
-
gam_nb_model_fn() - Default GAM count negative binomial model.
-
gam_poisson_model_fn() - Default GAM count model.
-
growth_rate_from_incidence() - Estimate growth rate from modelled incidence
-
infer_population() - Infers a daily baseline population for a timeseries
-
infer_prevalence()experimental - Infer the prevalence of disease from incidence estimates and population size.
-
infer_rate_ratio()experimental - Calculate a risk ratio from incidence
-
infer_risk_ratio()experimental - Calculate a normalised risk ratio from proportions
-
inv_wallinga_lipsitch() - Calculate a growth rate from a reproduction number and an infectivity profile,
-
multinomial_nnet_model() - Multinomial time-series model.
-
normalise_count() - Calculate a normalised count per capita
-
normalise_incidence() - Calculate a normalised incidence rate per capita
-
poisson_gam_model() - GAM poisson time-series model
-
poisson_glm_model() - Poisson time-series model.
-
poisson_locfit_model() - Poisson time-series model.
-
proportion_glm_model() - Binomial time-series model.
-
proportion_locfit_model() - A binomial proportion estimate and associated exponential growth rate
-
rescale_model() - Rescale a timeseries in the temporal dimension
-
rt_cori() - Reproduction number estimate using the Cori method
-
rt_epiestim() EpiEstimreproduction number wrapper function
-
rt_from_growth_rate() - Wallinga-Lipsitch reproduction number from growth rates
-
rt_from_incidence() - Reproduction number from modelled incidence
-
rt_from_renewal() - Reproduction number from renewal equation applied to modelled incidence using statistical re-sampling
-
rt_incidence_reference_implementation() - Reference implementation of the Rt from modelled incidence algorithm
-
rt_incidence_timeseries_implementation() - Time series implementation of the Rt from modelled incidence algorithm
-
wallinga_lipsitch() - Calculate the reproduction number from a growth rate estimate and an infectivity profile
-
format_ip() - Print a summary of an infectivity profile
-
make_empirical_ip() - Recover a long format infectivity profile from an
EpiEstimstyle matrix
-
make_gamma_ip() - Make an infectivity profile from published data
-
make_posterior_ip() - Make an infectivity profile from posterior samples
-
make_resampled_ip() - Re-sample an empirical IP distribution direct from data
-
omega_matrix() - Generate a infectivity profile matrix from a long format
-
summarise_ip() - Generate a single infectivity profile from multiple bootstraps
-
breaks_log1p() - A scales breaks generator for log1p scales
-
geom_events() - Add time series event markers to a time series plot.
-
integer_breaks() - Strictly integer breaks for continuous scale
-
logit_trans() - logit scale
-
plot_cases() - Plot a raw case counts as a histogram
-
plot_counts() - Plot a raw case count timeseries
-
plot_growth_phase() - Plot an incidence or proportion versus growth phase diagram
-
plot_growth_rate() - Growth rate timeseries diagram
-
plot_incidence() - Plot an incidence timeseries
-
plot_ip() - Plot an infectivity profile
-
plot_multinomial() - Plot a multinomial proportions model
-
plot_prevalence() - Plot a proportions timeseries
-
plot_proportion() - Plot a proportions timeseries
-
plot_proportions_data() - Plot a raw case count proportion timeseries
-
plot_rt() - Reproduction number timeseries diagram
-
scale_x_log1p() - A log1p x scale
-
scale_x_logit() - A logit x scale
-
scale_y_log1p() - A log1p y scale
-
scale_y_logit() - A logit y scale
-
as.Date(<time_period>)as.POSIXct(<time_period>) - Convert time period to dates
-
as.time_period()c(<time_period>)`[`(<time_period>)`[<-`(<time_period>)`[[`(<time_period>)`[[<-`(<time_period>)seq(<time_period>)is.time_period()print(<time_period>) - Convert to a time period class
-
cut_date() - Places a set of dates within a regular time series
-
date_seq(<Date>) - Expand a date vector to the full range of possible dates
-
date_seq() - Create the full sequence of values in a vector
-
date_seq(<numeric>) - Create the full sequence of values in a vector
-
date_seq(<time_period>) - Expand a
time_periodvector to the full range of possible times
-
date_to_time() - Convert a set of dates to numeric timepoints
-
fdmy() - Format date as dmy
-
is.Date() - Check whether vector is a date
-
julian(<time_period>) - Extract Parts of a POSIXt or Date Object
-
labels(<time_period>) - Label a time period
-
max_date() - The maximum of a set of dates
-
min_date() - The minimum of a set of dates
-
months(<time_period>) - Extract Parts of a POSIXt or Date Object
-
quarters(<time_period>) - Extract Parts of a POSIXt or Date Object
-
time_aggregate() - Aggregate time series data preserving the time series
-
time_summarise() - Summarise data from a line list to a time-series of counts.
-
time_to_date() - Convert a set of time points to dates
-
weekdays(<time_period>) - Extract Parts of a POSIXt or Date Object
-
cfg_beta_prob_rng() - Generate a random probability based on features of the simulation
-
cfg_gamma_ip_fn() - Get a IP generating function from time varying mean and SD of a gamma function
-
cfg_ip_sampler_rng() - Randomly sample from an empirical distribution
-
cfg_linear_fn() - Linear function from dataframe
-
cfg_step_fn() - Step function from dataframe
-
cfg_transition_fn() - Sample from a multinomial transition matrix
-
cfg_weekly_gamma_rng() - Weekly delay function with day of week effect
-
cfg_weekly_ip_fn() - Weekly convolution distribution function
-
cfg_weekly_proportion_rng() - Random probability function with day of week effect
-
quantify_lag() - Identify estimate lags in a model
-
score_estimate() - Calculate scoring statistics from predictions.
-
sim_apply_ascertainment() - Apply a ascertainment bias to the observed case counts.
-
sim_apply_delay() - Apply delay distribution to count or linelist data
-
sim_branching_process() - Generate a line list from a branching process model parametrised by reproduction number
-
sim_convolution() - Apply a time varying probability and convolution to count data
-
sim_delay() - Apply a time-varying probability and delay function to linelist data
-
sim_delayed_observation() - Apply a right censoring to count data.
-
sim_events() - Extract the events dataframe from a simulation output
-
sim_geom_function() - The principal input function to a
ggoutbreaksimulation as aggplot2layer.
-
sim_multinomial() - Generate a multinomial outbreak defined by per class growth rates and a poisson model
-
sim_poisson_Rt_model() - Generate an outbreak case count series defined by Reproduction number using a poisson model.
-
sim_poisson_model() - Generate an outbreak case count series defined by growth rates using a poisson model.
-
sim_seir_model() - SEIR model with time-varying transmission parameter
-
sim_summarise_linelist() - Summarise a line list
-
sim_test_data() - Generate a simple time-series of cases based on a growth rate step function
-
dbeta2() - The Beta Distribution
-
dgamma2() - The Gamma Distribution
-
dlnorm2() - The Log Normal Distribution
-
dnbinom2() - The Negative Binomial Distribution
-
dwedge() - Wedge distribution
-
pbeta2() - The Beta Distribution
-
pgamma2() - The Gamma Distribution
-
plnorm2() - The Log Normal Distribution
-
pnbinom2() - The Negative Binomial Distribution
-
pwedge() - Wedge distribution
-
qbeta2() - The Beta Distribution
-
qgamma2() - The Gamma Distribution
-
qlnorm2() - The Log Normal Distribution
-
qnbinom2() - The Negative Binomial Distribution
-
qwedge() - Wedge distribution
-
rbern() - A random Bernoulli sample as a logical value
-
rbeta2() - The Beta Distribution
-
rcategorical() - Sampling from the multinomial equivalent of the Bernoulli distribution
-
rdiscgamma() - Random count data from a discrete gamma distribution
-
reparam-dist - Re-parametrised distributions
-
rgamma2() - The Gamma Distribution
-
rlnorm2() - The Log Normal Distribution
-
rnbinom2() - The Negative Binomial Distribution
-
rwedge() - Wedge distribution
-
wedge - Wedge distribution
-
covid_ip - A COVID-19 infectivity profile based on an empirical resampling approach
-
covid_test_sensitivity - Test sensitivity of PCR tests
-
covid_viral_shedding - The COVID-19 viral shedding duration
-
du_serial_interval_ip - The Du empirical serial interval dataset
-
england_consensus_growth_rate - The SPI-M-O England consensus growth rate
-
england_consensus_rt - The SPI-M-O England consensus reproduction number
-
england_covid - Daily COVID-19 case counts by age group in England
-
england_covid_pcr_positivity - England COVID-19 PCR test positivity
-
england_covid_proportion_age_stratified() - The England COVID-19 poisson model dataset
-
england_covid_poisson_age_stratified() - The England COVID-19 age stratified poisson model dataset
-
england_covid_proportion_age_stratified - The England COVID-19 age stratified proportion model dataset
-
england_covid_test_positives - Weekly England COVID test positives by age group including testing effort
-
england_demographics - England demographics
-
england_events - Key dated in the COVID-19 response in England
-
england_nhs_app - NHS COVID-19 app data
-
england_ons_infection_survey - The england_ons_infection_survey dataset
-
england_variants - Counts of COVID-19 variants
-
ganyani_ip - A COVID-19 infectivity profile based on an Ganyani et al 2020
-
ganyani_ip_2 - A COVID-19 infectivity profile based on an Ganyani et al 2020
-
germany_covid - Weekly COVID-19 case counts by age group in Germany
-
germany_demographics - Germany demographics
-
test_bpm - An example of the linelist output of the branching process model simulation
-
test_delayed_observation - The delayed observation dataset
-
test_ip - A test infectivity profile generated from a set of discretised gamma distributions with parameters mean 5 (95% CI 4-6) and sd 2 (95% CI 1.5-2.5).
-
test_poisson_growth_rate - A simulation dataset determined by a step function of growth rates. This is useful for demonstrating growth rate estimators.
-
test_poisson_rt() - An example of the linelist output of the poisson model simulation with defined $R_t$
-
test_poisson_rt_2class - The test_poisson_rt_2class dataset
-
test_poisson_rt_smooth - Output of a poisson model simulation with a smooth function for $R_t$ defined as
R(t) = e^(sin(t/80*pi)^4-0.25)). This is a relatively unchallenging test data set that should not pose a problem for smooth estimators.
-
test_serial - A serial interval estimated from simulated data
-
test_ts - A test time series dataset, containing no statistical noise.
-
reband_discrete() - Reband any discrete distribution
-
vcov_from_residuals() - Estimate Parametric VCOV Matrix from Residuals