
Package index
-
doubling_time()
- Doubling time from growth rate
-
infer_population()
- Infers a daily baseline population for a timeseries
-
infer_prevalence()
- Infer the prevalence of disease from incidence estimates and population size.
-
infer_rate_ratio()
- Calculate a risk ratio from incidence (experimental)
-
infer_risk_ratio()
- Calculate a normalised risk ratio from proportions
-
inv_wallinga_lipsitch()
- Calculate a growth rate from a reproduction number and an infectivity profile
-
multinomial_nnet_model()
- Multinomial time-series model.
-
normalise_count()
- Calculate a normalised count per capita
-
normalise_incidence()
- Calculate a normalised incidence rate per capita
-
poisson_glm_model()
- Poisson time-series model.
-
poisson_locfit_model()
- Poisson time-series model.
-
proportion_glm_model()
- Binomial time-series model.
-
proportion_locfit_model()
- A binomial proportion estimate and associated exponential growth rate
-
rescale_model()
- Rescale a timeseries in the temporal dimension
-
rt_cori()
- Reproduction number estimate using the Cori method
-
rt_epiestim()
EpiEstim
reproduction number
-
rt_from_growth_rate()
- Wallinga-Lipsitch reproduction number from growth rates
-
rt_from_incidence()
- Reproduction number from modelled incidence
-
rt_from_renewal()
- Reproduction number from renewal equation applied to modelled incidence using statistical re-sampling
-
wallinga_lipsitch()
- Calculate the reproduction number from a growth rate estimate and an infectivity profile
-
format_ip()
- Print a summary of an infectivity profile
-
make_empirical_ip()
- Recover a long format infectivity profile from an
EpiEstim
style matrix
-
make_gamma_ip()
- Make an infectivity profile from published data
-
make_posterior_ip()
- Make an infectivity profile from posterior samples
-
make_resampled_ip()
- Re-sample an empirical IP distribution direct from data
-
summarise_ip()
- Generate a single infectivity profile from multiple bootstraps
-
breaks_log1p()
- A scales breaks generator for log1p scales
-
geom_events()
- Add time series event markers to a time series plot.
-
`%above%`
- Insert a layer at the bottom of a
ggplot
-
integer_breaks()
- Strictly integer breaks for continuous scale
-
logit_trans()
- logit scale
-
plot_cases()
- Plot a raw case counts as a histogram
-
plot_counts()
- Plot a raw case count timeseries
-
plot_growth_phase()
- Plot an incidence or proportion versus growth phase diagram
-
plot_growth_rate()
- Growth rate timeseries diagram
-
plot_incidence()
- Plot an incidence timeseries
-
plot_ip()
- Plot an infectivity profile
-
plot_multinomial()
- Plot a multinomial proportions mode
-
plot_prevalence()
- Plot a proportions timeseries
-
plot_proportion()
- Plot a proportions timeseries
-
plot_proportions()
- Plot a raw case count proportion timeseries
-
plot_rt()
- Reproduction number timeseries diagram
-
scale_y_log1p()
- A log1p y scale
-
scale_y_logit()
- A logit y scale
-
as.Date(<time_period>)
as.POSIXct(<time_period>)
- Convert time period to dates
-
as.time_period()
c(<time_period>)
`[`(<time_period>)
`[<-`(<time_period>)
`[[`(<time_period>)
`[[<-`(<time_period>)
seq(<time_period>)
is.time_period()
print(<time_period>)
- Convert to a time period class
-
cut_date()
- Places a set of dates within a regular time series
-
date_seq(<Date>)
- Expand a date vector to the full range of possible dates
-
date_seq()
- Create the full sequence of values in a vector
-
date_seq(<numeric>)
- Create the full sequence of values in a vector
-
date_seq(<time_period>)
- Expand a
time_period
vector to the full range of possible times
-
date_to_time()
- Convert a set of dates to numeric timepoints
-
fdmy()
- Format date as dmy
-
is.Date()
- Check whether vector is a date
-
julian(<time_period>)
- Extract Parts of a POSIXt or Date Object
-
labels(<time_period>)
- Label a time period
-
max_date()
- The maximum of a set of dates
-
min_date()
- The minimum of a set of dates
-
months(<time_period>)
- Extract Parts of a POSIXt or Date Object
-
quarters(<time_period>)
- Extract Parts of a POSIXt or Date Object
-
time_aggregate()
- Aggregate time series data preserving the time series
-
time_summarise()
- Summarise data from a line list to a time-series of counts.
-
time_to_date()
- Convert a set of time points to dates
-
weekdays(<time_period>)
- Extract Parts of a POSIXt or Date Object
-
cfg_beta_prob_rng()
- Generate a random probability based on features of the simulation
-
cfg_gamma_ip_fn()
- Get a IP generating function from time varying mean and SD of a gamma function
-
cfg_ip_sampler_rng()
- Randomly sample from an empirical distribution
-
cfg_linear_fn()
- Linear function from dataframe
-
cfg_step_fn()
- Step function from dataframe
-
cfg_transition_fn()
- Sample from a multinomial transition matrix
-
cfg_weekly_gamma_rng()
- Weekly delay function with day of week effect
-
cfg_weekly_ip_fn()
- Weekly convolution distribution function
-
cfg_weekly_proportion_rng()
- Random probability function with day of week effect
-
quantify_lag()
- Identify estimate lags in a model
-
score_estimate()
- Calculate scoring statistics from predictions using
scoringutils
.
-
sim_apply_ascertainment()
- Apply a ascertainment bias to the observed case counts.
-
sim_apply_delay()
- Apply delay distribution to count or linelist data
-
sim_branching_process()
- Generate a line list from a branching process model parametrised by reproduction number
-
sim_convolution()
- Apply a time varying probability and convolution to count data
-
sim_delay()
- Apply a time-varying probability and delay function to linelist data
-
sim_delayed_observation()
- Apply a right censoring to count data.
-
sim_multinomial()
- Generate a multinomial outbreak defined by per class growth rates and a poisson model
-
sim_poisson_Rt_model()
- Generate an outbreak case count series defined by Reproduction number using a poisson model.
-
sim_poisson_model()
- Generate an outbreak case count series defined by growth rates using a poisson model.
-
sim_summarise_linelist()
- Summarise a line list
-
sim_test_data()
- Generate a simple time-series of cases based on a growth rate step function
-
dbeta2()
- The Beta Distribution
-
dgamma2()
- The Gamma Distribution
-
dlnorm2()
- The Log Normal Distribution
-
dnbinom2()
- The Negative Binomial Distribution
-
pbeta2()
- The Beta Distribution
-
pgamma2()
- The Gamma Distribution
-
plnorm2()
- The Log Normal Distribution
-
pnbinom2()
- The Negative Binomial Distribution
-
qbeta2()
- The Beta Distribution
-
qgamma2()
- The Gamma Distribution
-
qlnorm2()
- The Log Normal Distribution
-
qnbinom2()
- The Negative Binomial Distribution
-
rbern()
- A random Bernoulli sample as a logical value
-
rbeta2()
- The Beta Distribution
-
rcategorical()
- Sampling from the multinomial equivalent of the Bernoulli distribution
-
rdiscgamma()
- Random count data from a discrete gamma distribution
-
reparam-dist
- Re-parametrised distributions
-
rgamma2()
- The Gamma Distribution
-
rlnorm2()
- The Log Normal Distribution
-
rnbinom2()
- The Negative Binomial Distribution
-
wedge
- Wedge distribution
-
covid_ip
- A COVID-19 infectivity profile based on an empirical resampling approach
-
covid_test_sensitivity
- Test sensitivity of PCR tests
-
covid_viral_shedding
- The COVID-19 viral shedding duration
-
du_serial_interval_ip
- The Du empirical serial interval dataset
-
england_consensus_growth_rate
- The SPI-M-O England consensus growth rate
-
england_consensus_rt
- The SPI-M-O England consensus reproduction number
-
england_covid
- Daily COVID-19 case counts by age group in England
-
england_covid_pcr_positivity
- England COVID-19 PCR test positivity
-
england_covid_proportion
- England COVID by age group for ascertainment
-
england_demographics
- England demographics
-
england_events
- Key dated in the COVID-19 response in England
-
england_nhs_app
- NHS COVID-19 app data
-
england_ons_infection_survey
- The england_ons_infection_survey dataset
-
england_variants
- Counts of COVID-19 variants
-
ganyani_ip
- A COVID-19 infectivity profile based on an Ganyani et al 2020
-
ganyani_ip_2
- A COVID-19 infectivity profile based on an Ganyani et al 2020
-
germany_covid
- Weekly COVID-19 case counts by age group in Germany
-
germany_demographics
- Germany demographics
-
test_ip
- A test infectivity profile generated from a set of discretised gamma distributions with parameters mean 5 (95% CI 4-6) and sd 2 (95% CI 1.5-2.5).
-
test_poisson_rt
- An example of the linelist output of the poisson model simulation with defined $R_t$
-
test_serial
- A serial interval estimated from simulated data
-
test_ts
- A test time series dataset