
Package index
-
doubling_time() - Doubling time from growth rate
-
gam_delayed_reporting() - Delayed GAM reporting model function generator
-
gam_knots() - Derive a set of knot points for a GAM from data
-
gam_nb_model_fn() - Default GAM count negative binomial model.
-
gam_poisson_model_fn() - Default GAM count model.
-
growth_rate_from_incidence() - Estimate growth rate from modelled incidence
-
growth_rate_from_prevalence()experimental - Estimate relative growth rate from estimated prevalence
-
growth_rate_from_proportion()experimental - Estimate relative growth rate from modelled proportion
-
infer_population() - Infers a daily baseline population for a timeseries
-
infer_prevalence()experimental - Infer the prevalence of disease from incidence estimates and population size.
-
infer_rate_ratio()experimental - Calculate a risk ratio from incidence
-
infer_risk_ratio()experimental - Calculate a normalised risk ratio from proportions
-
inv_wallinga_lipsitch() - Calculate a growth rate from a reproduction number and an infectivity profile,
-
linelist() - Coerce an object to a
ggoutbreakcompatible case linelist. -
multinomial_nnet_model() - Multinomial time-series model.
-
normalise_count() - Calculate a normalised count per capita
-
normalise_incidence() - Calculate a normalised incidence rate per capita
-
poisson_gam_model() - GAM poisson time-series model
-
poisson_glm_model() - Poisson time-series model.
-
poisson_locfit_model() - Poisson time-series model.
-
proportion_glm_model() - Binomial time-series model.
-
proportion_locfit_model() - A binomial proportion estimate and associated exponential growth rate
-
rescale_model() - Rescale a timeseries in the temporal dimension
-
rt_cori() - Reproduction number estimate using the Cori method
-
rt_epiestim() EpiEstimreproduction number wrapper function-
rt_from_growth_rate() - Wallinga-Lipsitch reproduction number from growth rates
-
rt_from_incidence() - Reproduction number from modelled incidence
-
rt_from_renewal() - Reproduction number from renewal equation applied to modelled incidence using statistical re-sampling
-
rt_incidence_reference_implementation() - Reference implementation of the Rt from modelled incidence algorithm
-
rt_incidence_timeseries_implementation() - Time series implementation of the Rt from modelled incidence algorithm
-
timeseries() - Coerce an object to a
ggoutbreakcompatible time series dataframe -
wallinga_lipsitch() - Calculate the reproduction number from a growth rate estimate and an infectivity profile
-
format_ip() - Print a summary of an infectivity profile
-
make_empirical_ip() - Recover a long format infectivity profile from an
EpiEstimstyle matrix -
make_fixed_ip() - Generate a simple discrete infectivity profile from a gamma distribution
-
make_gamma_ip() - Make an infectivity profile from published data
-
make_posterior_ip() - Make an infectivity profile from posterior samples
-
make_resampled_ip() - Re-sample an empirical IP distribution direct from data
-
omega_matrix() - Generate a infectivity profile matrix from a long format
-
summarise_ip() - Generate a single infectivity profile from multiple bootstraps
-
breaks_log1p() - A scales breaks generator for log1p scales
-
geom_events() - Add time series event markers to a time series plot.
-
integer_breaks() - Strictly integer breaks for continuous scale
-
logit_trans() - logit scale
-
plot_cases() - Plot a line-list of cases as a histogram
-
plot_counts() - Plot a raw case count timeseries
-
plot_growth_phase() - Plot an incidence or proportion versus growth phase diagram
-
plot_growth_rate() - Growth rate timeseries diagram
-
plot_incidence() - Plot an incidence timeseries
-
plot_ip() - Plot an infectivity profile
-
plot_multinomial() - Plot a multinomial proportions model
-
plot_prevalence()experimental - Plot a timeseries of disease prevalence
-
plot_proportion() - Plot a proportions timeseries
-
plot_proportions_data() - Plot a raw case count proportion timeseries
-
plot_rt() - Reproduction number timeseries diagram
-
scale_x_log1p() - A log1p x scale
-
scale_x_logit() - A logit x scale
-
scale_y_log1p() - A log1p y scale
-
scale_y_logit() - A logit y scale
-
as.time_period()seq(<time_period>)is.time_period()date_to_time()time_to_date() - Time period S3 class methods
-
cut_date() - Places a set of dates within a regular time series
-
date_seq(<Date>) - Expand a date vector to the full range of possible dates
-
date_seq() - Create the full sequence of values in a vector
-
date_seq(<numeric>) - Create the full sequence of values in a vector
-
date_seq(<time_period>) - Expand a
time_periodvector to the full range of possible times -
fdmy() - Format date as dmy
-
is.Date() - Check whether vector is a date
-
julian(<time_period>) - Extract Parts of a POSIXt or Date Object
-
labels(<time_period>) - Label a time period
-
max_date() - The maximum of a set of dates
-
min_date() - The minimum of a set of dates
-
months(<time_period>) - Extract Parts of a POSIXt or Date Object
-
quarters(<time_period>) - Extract Parts of a POSIXt or Date Object
-
set_defaults()with_defaults()set_default_start()set_default_unit() - Set or reset the default origin and unit for time periods
-
time_aggregate() - Aggregate time series data preserving the time series
-
time_summarise() - Summarise data from a line list to a time-series of counts.
-
weekdays(<time_period>) - Extract Parts of a POSIXt or Date Object
-
cfg_beta_prob_rng() - Generate a random probability based on features of the simulation
-
cfg_gamma_ip_fn() - Get a IP generating function from time varying mean and SD of a gamma function
-
cfg_ip_sampler_rng() - Randomly sample from an empirical distribution
-
cfg_linear_fn() - Linear function from dataframe
-
cfg_step_fn() - Step function from dataframe
-
cfg_transition_fn() - Sample from a multinomial transition matrix
-
cfg_weekly_gamma_rng() - Weekly delay function with day of week effect
-
cfg_weekly_ip_fn() - Weekly convolution distribution function
-
cfg_weekly_proportion_rng() - Random probability function with day of week effect
-
quantify_lag() - Identify estimate lags in a model
-
score_estimate() - Calculate scoring statistics from predictions.
-
sim_apply_ascertainment() - Apply a ascertainment bias to the observed case counts.
-
sim_apply_delay() - Apply delay distribution to count or linelist data
-
sim_branching_process() - Generate a line list from a branching process model parametrised by reproduction number
-
sim_convolution() - Apply a time varying probability and convolution to count data
-
sim_delay() - Apply a time-varying probability and delay function to linelist data
-
sim_delayed_observation() - Apply a right censoring to count data.
-
sim_events() - Extract the events dataframe from a simulation output
-
sim_geom_function() - The principal input function to a
ggoutbreaksimulation as aggplot2layer. -
sim_multinomial() - Generate a multinomial outbreak defined by per class growth rates and a poisson model
-
sim_poisson_Rt_model() - Generate an outbreak case count series defined by Reproduction number using a poisson model.
-
sim_poisson_model() - Generate an outbreak case count series defined by growth rates using a poisson model.
-
sim_seir_model() - SEIR model with time-varying transmission parameter
-
sim_summarise_linelist() - Summarise a line list
-
sim_test_data() - Generate a simple time-series of cases based on a growth rate step function
-
dbeta2() - The Beta Distribution
-
dcgamma() - Density: gamma distribution constrained to have mean > sd
-
dgamma2() - The Gamma Distribution
-
dlnorm2() - The Log Normal Distribution
-
dlogitnorm() - Logit-normal distribution
-
dlogitnorm2() - Logit-normal distribution
-
dnbinom2() - The Negative Binomial Distribution
-
dnull() - Null distributions always returns NA
-
dwedge() - Wedge distribution
-
pbeta2() - The Beta Distribution
-
pcgamma() - Cumulative probability: gamma distribution constrained to have mean > sd
-
pgamma2() - The Gamma Distribution
-
plnorm2() - The Log Normal Distribution
-
plogitnorm() - Logit-normal distribution
-
plogitnorm2() - Logit-normal distribution
-
pnbinom2() - The Negative Binomial Distribution
-
pnull() - Null distributions always returns NA
-
pwedge() - Wedge distribution
-
qbeta2() - The Beta Distribution
-
qcgamma() - Quantile: gamma distribution constrained to have mean > sd
-
qgamma2() - The Gamma Distribution
-
qlnorm2() - The Log Normal Distribution
-
qlogitnorm() - Logit-normal distribution
-
qlogitnorm2() - Logit-normal distribution
-
qnbinom2() - The Negative Binomial Distribution
-
qnull() - Null distributions always returns NA
-
qwedge() - Wedge distribution
-
rbern() - A random Bernoulli sample as a logical value
-
rbeta2() - The Beta Distribution
-
rcategorical() - Sampling from the multinomial equivalent of the Bernoulli distribution
-
rcgamma() - Sampling: gamma distribution constrained to have mean > sd
-
rdiscgamma() - Random count data from a discrete gamma distribution
-
rexpgrowth() - Randomly sample incident times in an exponentially growing process
-
rexpgrowthI0() - Randomly sample incident times in an exponentially growing process with initial case load
-
rgamma2() - The Gamma Distribution
-
rlnorm2() - The Log Normal Distribution
-
rlogitnorm() - Logit-normal distribution
-
rlogitnorm2() - Logit-normal distribution
-
rnbinom2() - The Negative Binomial Distribution
-
rnull() - Null distributions always returns NA
-
rwedge() - Wedge distribution
-
wedge - Wedge distribution
-
reband_discrete() - Reband any discrete distribution
-
vcov_from_residuals() - Estimate Parametric VCOV Matrix from Residuals