Plot a raw case count timeseries
Arguments
- raw
The raw count data, or the raw count data normalised by population ( see
normalise_count()) - EITHER: a dataframe with columns:population (positive_integer) - Size of population
count (positive_integer) - Positive case counts associated with the specified time frame
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
population_unit (double) - The population unit on which the per capita incidence rate is calculated
time_unit (lubridate::as.period) - The time period over which the per capita incidence rate is calculated
Any grouping allowed.
OR with columns:
count (positive_integer) - Positive case counts associated with the specified time frame
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
Any grouping allowed.
- ...
Named arguments passed on to
geom_eventseventsSignificant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
- mapping
a
ggplot2::aesmapping. Most importantly setting thecolourto something if there are multiple incidence timeseries in the plot- events
Significant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
Examples
# example code
tmp = ggoutbreak::england_covid %>%
time_aggregate(count=sum(count)) %>%
normalise_count(pop=56489700, population_unit=1000, normalise_time=TRUE)
# normalised by England population (56489700 people)
if(interactive()) {
plot_counts(tmp, colour="blue",size=0.25)
}
