Plot a proportions timeseries
Usage
plot_prevalence(
modelled = i_prevalence_model,
raw = i_proportion_data,
...,
mapping = .check_for_aes(modelled, ...),
events = i_events
)
Arguments
- modelled
Proportion model estimates - a dataframe with columns:
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
prevalence.0.025 (proportion) - lower confidence limit of prevalence (true scale)
prevalence.0.5 (proportion) - median estimate of prevalence (true scale)
prevalence.0.975 (proportion) - upper confidence limit of prevalence (true scale)
Any grouping allowed.
- raw
Raw count data - a dataframe with columns:
denom (positive_integer) - Total test counts associated with the specified time frame
count (positive_integer) - Positive case counts associated with the specified time frame
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
Any grouping allowed.
- ...
Named arguments passed on to
geom_events
events
Significant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
- mapping
a
ggplot2::aes
mapping. Most importantly setting thecolour
to something if there are multiple incidence timeseries in the plot- events
Significant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
Examples
if(interactive()) {
plot_prevalence(
ggoutbreak::england_ons_infection_survey,
mapping = ggplot2::aes(colour=geography))
}