Reproduction number timeseries diagram
Usage
plot_rt(
modelled = i_reproduction_number,
...,
mapping = .check_for_aes(modelled, ...),
events = i_events
)Arguments
- modelled
the modelled Rt estimate - a dataframe with columns:
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
rt.fit (double) - an estimate of the reproduction number
rt.se.fit (positive_double) - the standard error of the reproduction number
rt.0.025 (double) - lower confidence limit of the reproduction number
rt.0.5 (double) - median estimate of the reproduction number
rt.0.975 (double) - upper confidence limit of the reproduction number
Any grouping allowed.
- ...
Named arguments passed on to
geom_eventseventsSignificant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
- mapping
a
ggplot2::aesmapping. Most importantly setting thecolourto something if there are multiple incidence time series in the plot- events
Significant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
Examples
# example code
if (interactive()) {
tmp2 = england_covid_poisson %>%
rt_from_incidence()
# comparing RT from growth rates with England consensus Rt
# (N.B. offset by 17 days to align with estimates):
plot_rt(tmp2,colour="blue")+
ggplot2::geom_errorbar(
data=england_consensus_rt,
mapping=ggplot2::aes(x=date-17,ymin=low,ymax=high),
colour="red")
}
