Plot a raw case count proportion timeseries
Usage
plot_proportions_data(
raw = i_proportion_data,
...,
mapping = .check_for_aes(raw, ...),
events = i_events
)Arguments
- raw
The raw count and denominator data - a dataframe with columns:
denom (positive_integer) - Total test counts associated with the specified time frame
count (positive_integer) - Positive case counts associated with the specified time frame
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
Any grouping allowed.
- ...
Named arguments passed on to
geom_eventseventsSignificant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
- mapping
a
ggplot2::aesmapping. Most importantly setting thecolourto something if there are multiple incidence timeseries in the plot- events
Significant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
Examples
# example code
tmp = dplyr::tibble(
time = as.time_period(1:10, "1 day"),
count = 101:110
) %>% dplyr::mutate(
denom = count*time
)
if(interactive()) {
plot_proportions_data(tmp)+ggplot2::geom_line()
}
