Plot a raw case count proportion timeseries
Usage
plot_proportions_data(
raw = i_proportion_data,
...,
mapping = .check_for_aes(raw, ...),
events = i_events
)Arguments
- raw
The raw count and denominator data - a dataframe with columns:
denom (positive_integer) - Total test counts associated with the specified time frame
count (positive_integer) - Positive case counts associated with the specified time frame
time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
Any grouping allowed.
- ...
Named arguments passed on to
geom_eventseventsSignificant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
- mapping
a
ggplot2::aesmapping. Most importantly setting thecolourto something if there are multiple count timeseries in the data- events
Significant events or time spans - a dataframe with columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
Any grouping allowed.
A default value is defined.
Examples
tmp = example_england_covid_by_age() %>%
dplyr::filter(class %in% c("50_54","80_84"))
if(interactive()) {
plot_proportions_data(tmp, mapping= ggplot2::aes(colour=class))+ggplot2::geom_line()
}
