Skip to contents

Sometimes we may have, for example, modelled incidence or growth rates on weekly data resulting in cases per week and growth rate per week. We may wish to use this to estimate the reproduction number, using algorithms that assume a daily incidence. Not everything has a dependence on time, and things such as proportions, or prevalence will not change.

Usage

rescale_model(df = i_timeseries, time_unit)

Arguments

df

A data frame containing modelled output. This will modify the following columns if present:

A dataframe containing the following columns:

  • time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a time_period

  • incidence.fit (double) - an estimate of the incidence rate on a log scale

  • incidence.se.fit (positive_double) - the standard error of the incidence rate estimate on a log scale

  • incidence.0.025 (positive_double) - lower confidence limit of the incidence rate (true scale)

  • incidence.0.5 (positive_double) - median estimate of the incidence rate (true scale)

  • incidence.0.975 (positive_double) - upper confidence limit of the incidence rate (true scale)

Any grouping allowed.

A dataframe containing the following columns:

  • time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a time_period

  • growth.fit (double) - an estimate of the growth rate

  • growth.se.fit (positive_double) - the standard error the growth rate

  • growth.0.025 (double) - lower confidence limit of the growth rate

  • growth.0.5 (double) - median estimate of the growth rate

  • growth.0.975 (double) - upper confidence limit of the growth rate

Any grouping allowed.

A dataframe containing the following columns:

  • time (ggoutbreak::time_period + group_unique) - A (usually complete) set of singular observations per unit time as a time_period

  • proportion.fit (double) - an estimate of the proportion on a logit scale

  • proportion.se.fit (positive_double) - the standard error of proportion estimate on a logit scale

  • proportion.0.025 (proportion) - lower confidence limit of proportion (true scale)

  • proportion.0.5 (proportion) - median estimate of proportion (true scale)

  • proportion.0.975 (proportion) - upper confidence limit of proportion (true scale)

  • relative.growth.fit (double) - an estimate of the relative growth rate

  • relative.growth.se.fit (positive_double) - the standard error the relative growth rate

  • relative.growth.0.025 (double) - lower confidence limit of the relative growth rate

  • relative.growth.0.5 (double) - median estimate of the relative growth rate

  • relative.growth.0.975 (double) - upper confidence limit of the relative growth rate

Any grouping allowed.

time_unit

a lubridate period string such as "1 day"

Value

the same time series with different time unit, and adjusted incidence and growth rate figures.

Examples


sim = sim_poisson_model(time_unit = "1 week")
incidence = sim %>% poisson_locfit_model(frequency = "1 day", deg = 2, window=5)
incidence2 = incidence %>% rescale_model(time_unit = "1 day")
incidence2 %>% dplyr::glimpse()
#> Rows: 727
#> Columns: 20
#> Groups: statistic [1]
#> $ statistic        <chr> "infections", "infections", "infections", "infections…
#> $ time             <time_prd> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1…
#> $ incidence.fit    <dbl> 2.791372, 2.798220, 2.805334, 2.812709, 2.820342, 2.8…
#> $ incidence.se.fit <dbl> 0.05829053, 0.05436741, 0.05085982, 0.04774547, 0.045…
#> $ incidence.0.025  <dbl> 14.54322, 14.75618, 14.96404, 15.16711, 15.36573, 15.…
#> $ incidence.0.05   <dbl> 103.6897, 105.0781, 106.4406, 107.7792, 109.0962, 110…
#> $ incidence.0.25   <dbl> 109.7238, 110.7705, 111.8255, 112.8902, 113.9658, 115…
#> $ incidence.0.5    <dbl> 16.30338, 16.41541, 16.53259, 16.65497, 16.78259, 16.…
#> $ incidence.0.75   <dbl> 118.7000, 119.1997, 119.7670, 120.4004, 121.0987, 121…
#> $ incidence.0.95   <dbl> 125.6075, 125.6571, 125.8261, 126.1099, 126.5040, 127…
#> $ incidence.0.975  <dbl> 18.27657, 18.26120, 18.26556, 18.28879, 18.33010, 18.…
#> $ growth.fit       <dbl> 0.006669413, 0.006901825, 0.007138772, 0.007379524, 0…
#> $ growth.se.fit    <dbl> 0.005405515, 0.005196453, 0.004986659, 0.004776756, 0…
#> $ growth.0.025     <dbl> -3.925201e-03, -3.283037e-03, -2.634900e-03, -1.98274…
#> $ growth.0.05      <dbl> -0.0155530728, -0.0115190627, -0.0074448654, -0.00334…
#> $ growth.0.25      <dbl> 0.02116414, 0.02377809, 0.02642725, 0.02910356, 0.031…
#> $ growth.0.5       <dbl> 0.006669413, 0.006901825, 0.007138772, 0.007379524, 0…
#> $ growth.0.75      <dbl> 0.07220764, 0.07284746, 0.07351556, 0.07420978, 0.074…
#> $ growth.0.95      <dbl> 0.1089249, 0.1081446, 0.1073877, 0.1066561, 0.1059520…
#> $ growth.0.975     <dbl> 0.01726403, 0.01708669, 0.01691244, 0.01674179, 0.016…