Skip to contents

This is the output of the following estimator, and is here to speed up some examples:

Usage

data(england_covid_poisson)

Format

A dataframe containing the following columns:

  • time (as.time_period) - the time column

  • incidence.fit (numeric) - the incidence.fit column

  • incidence.se.fit (numeric) - the incidence.se.fit column

  • incidence.0.025 (numeric) - the incidence.0.025 column

  • incidence.0.05 (numeric) - the incidence.0.05 column

  • incidence.0.25 (numeric) - the incidence.0.25 column

  • incidence.0.5 (numeric) - the incidence.0.5 column

  • incidence.0.75 (numeric) - the incidence.0.75 column

  • incidence.0.95 (numeric) - the incidence.0.95 column

  • incidence.0.975 (numeric) - the incidence.0.975 column

  • growth.fit (numeric) - the growth.fit column

  • growth.se.fit (numeric) - the growth.se.fit column

  • growth.0.025 (numeric) - the growth.0.025 column

  • growth.0.05 (numeric) - the growth.0.05 column

  • growth.0.25 (numeric) - the growth.0.25 column

  • growth.0.5 (numeric) - the growth.0.5 column

  • growth.0.75 (numeric) - the growth.0.75 column

  • growth.0.95 (numeric) - the growth.0.95 column

  • growth.0.975 (numeric) - the growth.0.975 column

Any grouping allowed.

1410 rows and 19 columns

Details

england_covid %>% time_aggregate() %>% ggoutbreak::poisson_locfit_model(window=14)