
Package index
- 
          describe_population()
- Describe the population in a summary table
- 
          describe_data()
- Describe the data types and consistence
- 
          compare_population()
- Compares the population against an intervention in a summary table
- 
          compare_outcomes()
- Compares multiple outcomes against an intervention in a summary table
- 
          group_comparison()
- Extract one or more comparisons for inserting into text.
- 
          compare_missing()
- Compares missing data against an intervention in a summary table
- 
          remove_missing()
- Remove variables that fail a missing data test from models
- 
          count_table()
- Group data count and calculate proportions by column.
- 
          extract_comparison()
- Get summary comparisons and statistics between variables as raw data.
- 
          as_t1_shape()
- Summarise a data set
- 
          as_t1_signif()
- Compares the population against an intervention
- 
          as_t1_summary()
- Summarise a population
- 
          as_huxtable(<t1_shape>)
- Convert a t1_summaryobject to ahuxtable
- 
          as_huxtable(<t1_signif>)
- Convert a t1_signifS3 class to a huxtable
- 
          as_huxtable(<t1_summary>)
- Convert a t1_summaryobject to ahuxtable
Supporting functions
Modify data for making tabular summaries, making missing data more explicit or by converting discrete data types to explicit factors.
- 
          make_factors()
- Convert discrete data to factors
- 
          explicit_na()
- Make NA values in factor columns explicit
- 
          get_footer_text()
- Get footer text if available
- 
          format_pvalue()
- Format a p-value
- 
          cut_integer()
- Cut and label an integer valued quantity
- 
          label_extractor()
- Extract labels from a dataframe column attributes
- 
          set_labels()
- Set a label attribute
- 
          extract_units()
- Extracts units set as dataframe column attributes
- 
          set_units()
- Title
- 
          as_vars()
- Reuse tidy-select syntax outside of a tidy-select function
- 
          default.format
- Default table layout functions
- 
          test_cols
- A list of columns for a test case
- 
          bad_test_cols
- A list of columns for a test case
- 
          diamonds
- A copy of the diamonds dataset
- 
          missing_diamonds
- A copy of the diamonds dataset
- 
          mnar_two_class_1000
- Missing not at random 2 class 1000 items
- 
          multi_class_negative
- A multi-class dataset with equal random samples in each class
- 
          one_class_test_100
- A single-class dataset with 100 items of random data
- 
          one_class_test_1000
- A single-class dataset with 1000 items of random data
- 
          two_class_test
- A two-class dataset with random data