Skip to contents

ONS National and sub-national mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).

Usage

data("uk_population_2019_by_5yr_age")

Format

An object of class grouped_df (inherits from tbl_df, tbl, data.frame) with 7562 rows and 6 columns.

Details

Mid-2019: April 2019 local authority district codes edition of this dataset, this is UK wide and covers country, regions and LTLA (2019 boundaries)

Stratified by 5 year age groups

uk_population_2019_by_5yr_age dataframe with 7562 rows and 6 columns

name (chr)

The region name

code (chr)

The region code

codeType (chr)

The ONS geographical region code type (including year)

class (chr)

The age group in 5 year age bands

population (dbl)

the count of the population in that age group

baseline_proportion (dbl)

the proportion of the total regional population that is in an age group

Examples

dplyr::glimpse(uk_population_2019_by_5yr_age)
#> Rows: 7,562
#> Columns: 6
#> Groups: name, code, codeType [398]
#> $ code                <chr> "E06000001", "E06000001", "E06000001", "E06000001"…
#> $ class               <chr> "00_04", "05_09", "10_14", "15_19", "20_24", "25_2…
#> $ population          <dbl> 5229, 5923, 5812, 5167, 5176, 6103, 6112, 5575, 49…
#> $ name                <chr> "Hartlepool", "Hartlepool", "Hartlepool", "Hartlep…
#> $ codeType            <chr> "LAD19", "LAD19", "LAD19", "LAD19", "LAD19", "LAD1…
#> $ baseline_proportion <dbl> 0.055827808, 0.063237351, 0.062052251, 0.055165861…